Solving da Vinci stereopsis with depth-edge-selective V2 cells
نویسندگان
چکیده
We propose a new model for da Vinci stereopsis based on a coarse-to-fine disparity energy computation in V1 and disparity-boundary-selective units in V2. Unlike previous work, our model contains only binocular cells, relies on distributed representations of disparity, and has a simple V1-to-V2 feedforward structure. We demonstrate with random-dot stereograms that the V2 stage of our model is able to determine the location and the eye-of-origin of monocularly occluded regions, and improve disparity map computation. We also examine a few related issues. First, we argue that since monocular regions are binocularly defined, they cannot generally be detected by monocular cells. Second, we show that our coarse-to-fine V1 model for conventional stereopsis explains double matching in Panum's limiting case. This provides computational support to the notion that the perceived depth of a monocular bar next to a binocular rectangle may not be da Vinci stereopsis per se [Gillam, B., Cook, M., & Blackburn, S. (2003). Monocular discs in the occlusion zones of binocular surfaces do not have quantitative depth--a comparison with Panum's limiting case. Perception 32, 1009-1019.]. Third, we demonstrate that some stimuli previously deemed invalid have simple, valid geometric interpretations. Our work suggests that studies of da Vinci stereopsis should focus on stimuli more general than the bar-and-rectangle type and that disparity-boundary-selective V2 cells may provide a simple physiological mechanism for da Vinci stereopsis.
منابع مشابه
A laminar cortical model of stereopsis and 3D surface perception: closure and da Vinci stereopsis.
A laminar cortical model of stereopsis and 3D surface perception is developed and simulated. The model describes how monocular and binocular oriented filtering interact with later stages of 3D boundary formation and surface filling-in in the LGN and cortical areas V1, V2, and V4. It proposes how interactions between layers 4, 3B, and 2/3 in V1 and V2 contribute to stereopsis, and how binocular ...
متن کاملPictorial cues constrain depth in da Vinci stereopsis
"da Vinci stereopsis" is defined as depth seen in a monocular object occluded by a binocular one, and the visual system must solve its depth ambiguity [Nakayama, K., & Shimojo, S. (1990). da Vinci stereopsis: Depth and subjective occluding contours from unpaired image points. Vision Research, 30, 1811-1825]. Although fused images include various pictorial features, effects of pictorial depth cu...
متن کاملThe role of transparency in da Vinci stereopsis
The majority of natural scenes contains zones that are visible to one eye only. Past studies have shown that these monocular regions can be seen at a precise depth even though there are no binocular disparities that uniquely constrain their locations in depth. In the so-called da Vinci stereopsis configuration, the monocular region is a vertical line placed next to a binocular rectangular occlu...
متن کاملda Vinci decoded: does da Vinci stereopsis rely on disparity?
In conventional stereopsis, the depth between two objects is computed based on the retinal disparity in the position of matching points in the two eyes. When an object is occluded by another object in the scene, so that it is visible only in one eye, its retinal disparity cannot be computed. Nakayama and Shimojo (1990) found that a precept of quantitative depth between the two objects could sti...
متن کاملA computational theory of da Vinci stereopsis.
In binocular vision, occlusion of one object by another gives rise to monocular occlusions—regions visible only in one eye. Although binocular disparities cannot be computed for these regions, monocular occlusions can be precisely localized in depth and can induce the perception of illusory occluding surfaces. The phenomenon of depth perception from monocular occlusions, known as da Vinci stere...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Vision Research
دوره 47 شماره
صفحات -
تاریخ انتشار 2007